
Software for Writing Assistance and Improvement

for Advanced Learners of English

A Thesis Presented

by

Diane M. Napolitano

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

December 2008

Stony Brook University

The Graduate School

Diane M. Napolitano

We, the thesis committee for the above candidate for the Master of Science degree,

hereby recommend acceptance of this thesis.

Amanda Stent - Thesis Advisor

Assistant Professor, Computer Science

Steven Skiena

Professor, Computer Science

David Warren

Professor, Computer Science

This thesis is accepted by the Graduate School

Lawrence Martin

Dean of the Graduate School

ii

Abstract of the Thesis

Software for Writing Assistance and Improvement

for Advanced Learners of English

by

Diane M. Napolitano

Master of Science

in

Computer Science

Stony Brook University

2008

Many writing assistance systems use a one-size-fits-all approach, treating every indi-

vidual’s problems as equivalent and failing to help the user overcome them. Many

users become reliant on these software packages and their skills rarely improve. Soft-

ware should teach the student, not just fix their errors; the student should be required

to fix some of the errors manually so that they learn how to correct them and will,

eventually, no longer need the software. However, if the student is always asked to

manually correct repeated mistakes, they could become uninterested in using the pro-

gram. Here, we explore techniques for making effective software to accomplish these

goals, among others. We analyze the strengths and weaknesses of existing systems

and discuss their relationship to ours, we describe the system we have built, Tech-

Writer, and discuss the hurdles one encounters when building any such system, and

we provide some discussion on relevant experiments we have conducted, in an effort

to find data and techniques that could improve our system’s performance. Our goals

with the system we have built, TechWriter, are to analyze the students writing, point

out their mistakes, make them correct the mistakes, let the program learn from the

way the corrections are made and automatically apply the corrections in the future.

In this way, TechWriter both assists the student with their writing and improves their

writing ability. In addition to the automated error detection, TechWriter provides

the student with many NLP tools that they can use to gain a better understanding

of their discourse. Our target audience is advanced learners of English, both native

and non-native.

iii

Table of Contents

Abstract . iii

List of Figures. iv

Acknowledgements

Introduction . 1

I Related Work . 5

I.1 Comprehensive, Complete Systems 7

I.2 Components of Writing Systems . 10

II System Description . 13

II.1 Features and Functionalities in TechWriter 13

II.2 Error Detection and Correction Suggestion 17

II.3 Future Directions . 20

III Errors: Unique to the User or Their Background? 24

III.1 Determining the Native Language of a Writer 26

III.2 What is Characteristic of Non-Native English? 30

IV Results and Conclusions . 39

Bibliography. 41

Appendix A Sample Essay from the ICLE: SWUL8050.txt. 44

iv

List of Figures

II.1 TechWriter’s XML format for storing edit histories 14

II.2 Screenshot of TechWriter . 15

II.3 Typical data format . 17

III.1 Sample testing data . 26

III.2 A portion of our Pearson’s r coefficient data 27

III.3 Our results corresponding to the data in III.2 28

III.4 Results from our native language prediction tests 29

III.5 Results of our tests with a smaller set of German data 29

III.6 The most frequent POS tags in our testing data 32

III.7 The most frequent word n-grams in our testing data 33

III.8 Most common word n-grams specific to a particular background . . . 35

III.9 Most frequent error n-grams . 36

III.10Count of idiosyncratic n-grams . 37

v

Acknowledgements

I would sincerely like to thank my advisor, Amanda Stent, for all of her guidance and

support over the course of both this project and my degree program. I would also

like to thank all of my friends and family for their continued support and motivation,

despite the fact that their efforts mainly consisted of asking me, “You’re still working

on that?” In particular, I appreciate the immeasurable patience from my boyfriend,

Chris, and my friend Justin for his help with regular expressions and for entertaining

my ideas, even though they were well outside his areas of expertise. I am grateful

to both him and Mike Hart for proofreading this and supplying me with valuable

feedback.

Introduction

In ancient societies, literacy was often a privilege granted on the basis of money,

birthright, or social standing; in our modern world, it is a bare necessity. Poor writing

skills can often serve as a disadvantage to a student who is otherwise quite bright and

hard-working, and the development of these skills is something that many students

overlook, particularly in a discipline such as Computer Science where emphasis is

placed on mathematical ability and abstract reasoning. Writing is a key component

of communication, and the ability to effectively communicate is at the top of a list

of skills that employers look for in prospective hires, according to both the National

Association of Colleges and Employers [1], and also the Association for Computing

Machinery [2]. Writing is an important skill which needs to be developed, no matter

what sort of career path a student chooses to take. A student wishing to enter

academia, or simply pass their college courses, can find themselves at a disadvantage

with inadequate writing skills; a problem which may seem insurmountable, especially

if their writing is required to be in a language different from their native one.

Today, it is not only important to be literate, but also to be well-versed in the

English language. English is regarded as the language du jour around the world,

and is used, almost exclusively, in both business and academia. Approximately 750

million people use English as a second language—as opposed to 375 million people

who speak it natively—and as much as 74 percent of all writing done in English is

done by non-native speakers [9]. In 2001, as many as 53 percent of all students in

graduate engineering programs in the United States were temporary visa holders,

[11] and for the academic year spanning 2003-2004, a sizable majority of Computer

Science graduate students in the United States—52.8 percent at the Ph.D level and

50.6 percent at the Master’s—were nonresident aliens [25]. Science education in the

US, especially on the graduate level, is incredibly popular with international students,

as it rewards them with a strong degree and a solid understanding of English. These

students are entering the US with varying degrees of writing and speaking ability

in English, as they are required to pass the Test of English as a Foreign Language

(TOEFL) prior to being admitted to their graduate programs; however, no matter

how advanced their grasp of the language is, even some non-native speakers can tell

1

2

the difference between writing done by a native or non-native speaker [16].

Our work here focuses on these two types of students: native English speakers

whose writing skills are somewhat poor, and non-native English speakers with some

significant understanding of the English language. For the sake of brevity, we refer

to the former group as the “L1”—students who are in the process of gaining a better

grasp of their first language—and the latter group as the “L2”—students who are

learning, or working on improving their knowledge of, a second language. These two

groups contain students who are fairly advanced in their English writing skills, and

will be treated as such in the type of assistance and feedback they receive on their

work.

These advanced English learners need occasional assistance with their writing, and

their style and grammar could benefit from some improvement. The International

Corpus of Learner English (ICLE) [12] consists almost entirely of this type of writing;

it contains essays written by students in the L2 whose English writing is not exactly

wrong, but when read by a native speaker with a strong command of the language,

not quite right. The authors of these essays, however, are highly advanced in their

learning. For example, consider the following sentence from the Russian subcorpus1:

(1) The matter is that sometimes it’s difficult to make them answer in proper time.

While this sentence is not altogether wrong, it is somewhat awkward, and some of

the terms and expressions are ones which may be proper in Russian, but not in

English; for instance, in English we would say “the problem” or “the issue”, instead

of “the matter”. If we are to assume that this sentence comes from an essay that was

thoroughly proof-read by the author, we can see that this type of error is difficult for

a non-native writer of English to detect. Lacking a second proof-reader, the student

could perhaps benefit from software that could not only point out their mistakes, but

also offer suggestions on how to fix them.

Many software packages already exist that attempt to assist the student in this

way, but often do little to teach them the correct way to write, failing to help them

1By “Russian subcorpus”, we mean a subcorpus from ICLE where the authors were all native
Russian speakers, writing in English.

3

improve on their personal skills. It is easy for the student to become dependent on

this type of software, and to pay little attention to the way they are fixing their

mistakes—they may just simply choose a suggested correction from the list without

thinking, in an effort to silence the program. The suggestion they have chosen may

not have been the best one in terms of the overall flow of the sentence or paragraph,

or may not capture the mood or idea they were trying to convey. A larger context

window is required to make accurate suggestions to the student and should contain

a list of past corrections of the same type made throughout the entire document. In

other words, the software should become personalized, to some extent, to the writing

style and errors made by the student. A general, “one-size-fits-all” treatment of the

student’s deficiencies can fail to help them understand their specific mistakes, and

can only offer them broad suggestions on how to fix them.

In order to accomplish this, we have developed TechWriter, which adopts the

following approach:

• Detect errors in the student’s writing, and provide a precise explanation of every

error.

• Offer suggestions for correcting the error, and allow the student to select one

or input their own.

• Have the student repeat this process a small number of times—this forces them

to learn from their mistakes, thereby improving their writing ability.

• Have the software learn from the way the student is correcting his or her mis-

takes, and then automatically apply those corrections for the student—this

keeps the student from becoming frustrated by the monotony inherent in fixing

repeated mistakes, and provides them with some level of assistance with their

writing.

TechWriter compares the student’s sentences and paragraphs against a corpus of

American English writing and outputs patterns in their writing which are not found

in the corpus. An example of this is the sentence (1) from the Russian L2 student.

In order to detect errors and offer suggestions for them, TechWriter will take this

4

sentence and tag every word with its part-of-speech (POS), and separately, stem

every word in the sentence, producing the following output:

(2) The/DT matter/NN is/VBZ that/WP sometimes/RB it’s/RBR difficult/JJ

to/TO make/VB them/PRP answer/VB in/IN proper/JJ time./.

(3) the matter is that sometim it s difficult to make them answer in proper time

These two sentences are then compared to data from the corpus, and if a portion of

the sentence is not found in the corpus, it is reported back to the user as an error.

In particular, for (3), TechWriter gives a long list of errors, each of which has a

number of suggestions for the student. One such error, “the matter is”, receives the

following suggestions, among others: “the problem is”, “the result is”, “the situation

is”, “the answer is”, “the economy is”, “the idea is”, and so on. Many of these are

reasonable suggestions for this sentence, but the ideal one that best fits, given the

context, would be “the problem is”, which is then replaced in the original sentence,

giving the following result:

(4) The problem is that sometimes it’s difficult to make them answer in proper

time.

TechWriter will be explained in full in chapter 3, where we will discuss its current

operation, as well as ideas that never quite came to be incorporated into the system

and also future directions. In chapter 2, we will discuss some work that is similar in

theme and functionality to TechWriter, and also discuss some issues that arise when

developing such a system. In chapter 4 we will detail experiments we have performed

that are either directly related to TechWriter, or found to be less valuable. We will

present the results of these experiments within chapter 4 and offer our final thoughts

and conclusions in chapter 5.

Chapter I

Related Work

Many different tools already exist that can help the student with their writing: gram-

mar checking software, spell checking software and the Internet, to broadly name a

few. Setting aside the last two for now, many students happen to think that their

writing problems can be solved with grammar-checking software; but as we saw with

our example in the introduction, some sentences can simply be ill-formed according

to the rules of the language, yet still grammatically-correct. Gregor Thurmair pre-

cisely defines the difference between grammar and style: “Grammar checking tries

to find ill-formedness which by definition is considered to be a mistake and MUST

be corrected; style checking has to do with well-formed but somehow marked texts”

[24]. Grammar and spelling are certainly vital, but they do not make up the whole

picture, and both receive moderate attention in our work.

Although Thurmair developed a grammar checker for German, he discusses some

key issues that appear in the development of any such tool. In order to detect stylis-

tic errors, a parser must be able to successfully parse any given sentence, but to

accomplish that, “information must be used which could have been violated”. In

other words, the parser must essentially know what the correct sentence should look

like and perform the parse on that sentence; otherwise it will not perform a proper

parse. To borrow another example from the ICLE, this sentence, written by a native

German speaker,

(5) And the strong feelings you get may not only be positive.

5

CHAPTER I. RELATED WORK 6

is POS tagged by our software as

(6) And/CC the/DT strong/JJ feelings/, you/PRP get/VBP may/MD not/RB

only/RB be/VB positive./VBN

As can be seen, the word “feelings” is mis-tagged, and should be tagged as it would

in a “proper” sentence such as

(7) She/PRP developed/VBD strong/JJ feelings/NNS towards/IN him./NN

Parsers and taggers are vital tools which can provide information that can be ex-

tremely helpful to detect errors, but in order to be useful, the tools need to tag the

input correctly. In order to do this successfully, they almost need to know the correct

form of the input in order to produce the desired output—they must know the output

before producing the output [24]. Parsers and taggers rely on the output that they

have already produced in order to properly parse or tag the current word or phrase,

within some window of context. For a word Y , surrounded by words—or a sequence

of words—X and Z, Y will not be properly tagged if the tagger cannot determine its

tag by looking at the tags for X and Z; if, perhaps, they are mis-tagged or the tagger

cannot find a matching sequence of tags in its model from which to infer the tag for

Y , based on X and Z.

This ties in to another problem, in which a sentence may be error-free, but still

unable to be properly tagged or parsed. Consider the sentence

(8) The man saw a boy with a telescope.1

This sentence is completely correct, but incredibly ambiguous; did the man use a

telescope to see the boy, or did the boy have a telescope when the man saw him? If

this sentence did indeed contain an error, our software would not be able to provide

much useful information to directly attack that mistake; as Thurmair states, a parser,

operating on any such sentence, “has to find ‘the best path’ and interpret it” [24].

Our software’s dependency parser decided to choose the man seeing the boy as the

1This example is from Church, K. and R. Patil. “Coping with Syntactic Ambiguity or How to
Put the Block in the Box on the Table”. Computational Linguistics, 1982.

CHAPTER I. RELATED WORK 7

nominal subject of the sentence and the boy being seen by the man as the direct

object2, but it is entirely possible that the writer of that sentence could have meant

the opposite. This is more of an issue when the student writes a sentence that is

both ambiguous and incorrect; the software could potentially have them fix it in such

a way that could destroy the original intention of the sentence, unbeknownst to the

student who operates under the assumption that the software is never wrong.

There is a large body of work relating to solving these and other problems, both as

key components or completely independently of larger, comprehensive systems such

as ours. We will first discuss these systems and highlight ways in which they differ

from ours. We will then talk about some related technologies that are pertinent to our

task, and how we have either incorporated them, discarded them, or could potentially

use them to improve our system.

I.1 Comprehensive, Complete Systems

In 1992, Genthial and Courtin proposed a detailed architecture for a system they

called “Computer Aided Writing”, or CAW [10]. The system is motivated by their

perception that, “In their life-cycle from creation to publishing, all texts nowadays

take an electronic form”, so logically, every aspect of the development and mainte-

nance of texts should be computerized, not just their initial creation and layout. CAW

would include several modules that would each handle typographic errors, spelling

errors, lexical errors, syntactic agreement, and also standard word processor features

such as layout and printing. Each of the modules would be capable of sharing data

with one another, although some would require input from other modules and one,

the Lexicon, only provides information to the other modules. The information pro-

vided in the Lexicon is “all of the knowledge of the system”: essentially a dictionary

of words and their morphological, syntactic and semantic roles. This data would be

used in almost all of the modules, particularly in the modules which perform error

2[det(man-2, A-1), nsubj(saw-3, man-2), det(boy-5, a-4), dobj(saw-3, boy-5), det(telescope-8,
a-7), prep with(saw-3, telescope-8)]

CHAPTER I. RELATED WORK 8

detection and correction, which they propose to be done both manually and automat-

ically. When an error is made, their system would suggest one or more corrections

to it, based on the data in its lexicon; but in most cases, they feel “the good cor-

rection can be chosen automatically”, implying that their system would utilize error

correction which is almost entirely automatic, unlike our system. For selecting the

best possible correction, Genthial and Courtin propose the following criteria for their

software to use [10]:

• Favor corrections where the lowest number of errors are corrected within a

“group”; for example, “little cat are funny pets” would be corrected to “little

cats are funny pets” as opposed to “a little cat is a funny pet”.

• Make corrections that do not destroy the original phonetic meaning of the sen-

tence; i.e., favor “the ski slides” over “the skis slide” for fixing the phrase “the

skis slides”.

• Give priority to the “head” of the phrase, which would correct “those who is”

to “those who are”. Here, it is safe to assume that the head of such a phrase is

in line with the idea the student wished to express, and it is the words written

to support it that are in error, since they are not as integral as the idea itself

(as with our example in chapter 1).

• It is unlikely that a writer added a letter to a word, or an additional word to a

sentence, and more probable that they will omit one, so favor corrections that

add necessary letters or words rather than those that remove a word already in

the sentence.

It is not evident from the paper whether or not Genthial and Courtin ever released

a version of their system for public use, but one similar, modularized system that was

actually quite popular was the Writer’s Workbench [17]. The Writer’s Workbench

was a series of UNIX command line programs that hinged on the style and diction

commands3 and provided proofreading, comments on style and a reference manual

3These programs have been since ported to Linux and are available from the Free Software
Foundation.

CHAPTER I. RELATED WORK 9

for the English language. The proofreading program, proofr, invoked five separate

programs to perform spelling correction, check punctuation, determine if a word was

repeated consecutively, display potentially “poor” phrases to the student (with a

related program that offered improvements to these), and check for split infinitives.

There were separate commands to give stylistic feedback, based on an analysis of

parts of speech, and also some interesting programs that told the user how abstract

or sexist (according to guidelines supplied by Bell Labs) their document was. Overall,

however, the software was limited, as it did not provide the student with the means of

correcting their work online; it was up to them to take the feedback from the Writer’s

Workbench, interpret it, and manually apply it to their document.

The Writer’s Workbench did, however, contain a lot of useful, relevant work, and

its output was extremely helpful to many writers. Most successful systems have done

well to combine these tools with an architecture along the lines of that proposed

by Genthial and Courtin, an example of which could be the Educational Testing

Service’s Criterion service [5]. This system contains an application called Critique

which detects “numerous errors under the broad headings of grammar, usage, and

mechanics” using bigrams of adjacent words and POS tags created from a corpus

of 30 million words of newspaper text. It relies on bigram frequencies to determine

whether an error exists, and uses pointwise mutual information to determine whether

an observed bigram occurs more or less often than it is expected to, with log-likelihood

serving in cases where the data is sparse. When compared to the other systems,

our error detection operates most similar to Critique’s in that we also rely on the

frequencies of n-grams in our analysis; where Critique differs in this regard is in their

use of “filters” for “low probability, but nonetheless grammatical, sequences”. At the

moment, our system simply treats everything not found in the corpus as an error and

offers suggestions.

In Criterion, the errors found in an essay are reported to the student, but, similar

to the Writer’s Workbench, there is no evidence that the system gives suggestions to

the student on how they could fix the error. Providing suggestions to the student is

one of the most important aspects of PENS, a system specifically designed for Chinese

learners of English [16]. PENS employs a parallel corpus of both Chinese and English

CHAPTER I. RELATED WORK 10

which allows the student to see what they just wrote in English in Chinese, and

vice-versa; ideally, this should help them find their mistakes in the foreign language

if they can see them in their native language. PENS provides suggestions to the

student by querying its corpus of sentences with both the original student’s sentence

and expanded queries based on this. The results are ranked and the top two are

presented to the user. This is in contrast to the way our system currently operates,

which is to offer suggestions at the n-gram level, but is nonetheless very similar in

basic functionality and purpose.

Other systems choose to follow the “web as a corpus” model, rather than use their

own corpus. Moré et al. developed a grammar and style checker that relies on data

in WordNet and results from Yahoo and AltaVista [19], but fails to consider the pos-

sibility that, simply because something exists on the Internet, it is not automatically

correct (or, for that matter, automatically incorrect). Having a constant corpus from

which to draw from seems to be a much more effective and practical approach.

To summarize, Genthial and Courtin outlined an interesting system for writing

assistance and improvement, which was similar to its predecessor, the Writer’s Work-

bench, but more unified and complete. These ideas were expanded upon with Crite-

rion, and new directions in the same vein were explored with PENS. Each of these

systems relies on individual components, smaller parts combined to create the whole;

it is these technologies we will focus on next.

I.2 Components of Writing Systems

In this section we will focus on software that has been developed to perform one

specific task, potentially within a larger system similar to ours. Some of this work

is in the vein of fixing the problems presented by Thurmair in regards to parsing

error-laiden text. For instance, Eric Atwell developed CLAWS, the “Constituent

Likelihood Automatic Word-tagging System”, which attempts to detect grammatical

errors without performing any parsing [3]. CLAWS uses a first-order Markov model

to first assign tags, then for each set of ambiguously-tagged words, a Constituent

Likelihood Grammar is used to assign a “likelihood” to each tag within that set. The

CHAPTER I. RELATED WORK 11

product of the likelihoods for that set is compared against a frequency table to see if

the value indicates a possible error in the set. Ideally, the tags assigned to the words

will be correct for each of them, and with this procedure, errors should be detected

during the process, as opposed to afterwards, where tagged sentences are examined

for errors. If CLAWS works as described, it is a potential solution to the problems

discussed by Thurmair.

Another attempt at solving the parsing problem was made with ICICLE, a system

targeted specifically for L2 learners of English [23]. With ICICLE, authors Schnei-

der and McCoy attempt to augment a standard parser with “mal-rules”, which are

designed to catch common “ungrammaticalities”, such as missing words and noun-

determiner disagreements. A grammar is used to parse sentences and is catered

specifically to the problems made by students of the native language ICICLE was

designed to work with (American Sign Language), and as a result of this, when com-

bined with the mal-rules, the parser actually works quite well. It properly tags 63% of

the evaluation sentences for determiner and agreement errors, which indicates that a

parser designed for and trained on text written in the L2 by students with a different

L1, as opposed to a general purpose English parser, is a very viable option.

A different way to look at the same problem is to use a parser, but to only focus on

one type of error. Work done by Chodorow et al. focuses on determining preposition

errors, which account for about 29% of all errors committed in L2 English writing

[7]. Their approach uses a Maximum Entropy classifier to determine whether or not

the correct preposition has been selected (for example, “The book was on the table”

as opposed to “The book was at the table”) which was trained on “events”. Each

event consists of the preposition as it is used by data within the training corpus and a

feature-value pair with its associated context, extracted from the corpus after having

been POS tagged and chunked into noun phrases. The system works quite well, and

while it does perform some parsing, it is done on text assumed to be correct for the

purposes of this system, decreasing the possibility for errors made by the system as

a result of parsing.

However, work done by Chodorow and Leacock attempts to find errors without

doing any parsing. They developed ALEK, a system which is able to “automatically

CHAPTER I. RELATED WORK 12

identify inappropriate usage of specific vocabulary words in essays by looking at the

local contextual clues around a target word” [6]. Here, error detection is simply an

extension of word-sense disambiguation, where the intended sense of a polysemous

word is determined by examining example sentences that cover all of the possible

senses for that word, extracting “contextual clues” from these sentences, and using

this data to build a model for each sense. While our system does not exactly include

word-sense disambiguation, it does rely on example sentences from our corpus to

determine the correct term or phrase the student perhaps meant to use.

While all of these systems target writing which is highly error-prone, only the work

done by Chodorow et al. makes use of an “error corpus”, a collection of documents

that are not guaranteed to be perfectly correct, and with good reason. Error corpora

can be useful in detecting errors made by a student: if the student’s writing exists in

the corpus, it is safe to assume it is an error.4 Nagata et al. use a “feedback corpus”,

a collection of corrected essays written by L2 students, to account for differences in

the correct English used in corpora such as newspaper texts and in the English used

by these students [21]. An unfortunate result of this is that the feedback corpus was

found to have little or no impact on the performance of the program, due to its size;

the size of their corpus of general text was significantly larger than their feedback

corpus, and overpowered it.

Perhaps Nagata et al.’s method would have been improved if they added students’

writing, as it was corrected, to the corpus “on-the-fly”. General corpora tend to

consist of newspaper articles and other such texts whose writing is both grammatically

and stylistically correct, thus useful for an application such as ours where writing

improvement is a goal. An error corpus can also be useful to support these general

corpora, since not all newspaper text can be guaranteed to be error-free.

4This can be supported further by an “error-free corpus”; if the phrase exists in the error corpus
and not in this one, it must almost definitely an error.

Chapter II

System Description

Our solution to the problems posed thus far is known as TechWriter, and is centered

on improving technical and formal, academic writing in advanced L1 and L2 students.

The technologies and knowledge available to TechWriter specifically cater to this and

to our overall concept of software that both assists with and improves the student’s

writing. We shall demonstrate this in the subsequent sections of this chapter; we

will begin with a broad overview of TechWriter’s functionalities, discuss it’s error

detection and suggestion system in-depth, then consider some future directions for

the system.

II.1 Features and Functionalities in TechWriter

Our system is written entirely in Java as a plugin for the open source text editor, jEdit

[14]. jEdit is a fully-functional, feature-rich programmer’s editor similar to Emacs; we

chose it, therefore, because we felt students in technical programs would be keen on

using it for purposes other than TechWriter, thus they would not have to download

much additional software. Another advantage to using jEdit is its inherent multiple

windowing system, known as “views”. In jEdit, the student can run one instance of

TechWriter with multiple essays—or multiple copies of the same essay—at a time,

each in their own view. When using TechWriter with a selected view, jEdit will only

affect the text in that view, known as the “buffer”. This allows the student to develop

13

CHAPTER II. SYSTEM DESCRIPTION 14

<sentence number="0">

<before>My brother is only five feet tall.</before>

<after>My brother enjoys playing basketball, but he is only five

feet tall.</after>

</sentence>

<sentence number="1">

<before>If he were a foot taller, he would be a great basketball

player.</before>

<after>If he were a foot taller, he would be a great basketball

player.</after>

</sentence>

<paragraph number="0">

<before>My brother is only five feet tall. If he were a foot

taller, he would be a great basketball player.</before>

<after>My brother enjoys playing basketball, but he is only five

feet tall. If he were a foot taller, he would be a great

basketball player.</after>

</paragraph>

Figure II.1: XML for the before and after snapshots of the sentences and paragraphs
of this (very short) document.

their own sort of versioning system for their work, or perhaps to compare two different

essays side-by-side, without utilizing all of their computer’s resources.

This sort of manual versioning system is not entirely necessary, however, because

TechWriter supplies the student with its own. It has the ability to store a one-

level history of the student’s document in an XML-based format in two files, one for

sentences and the other for paragraphs. Each sentence and paragraph is numbered for

reference and labelled as either the previous version (“before”) or the current version

(“after”, as in, after the changes were made to the previous version). An example of

this is given in figure II.1. This sort of versioning system can help the student follow

their progress; by seeing a prior iteration of an isolated sentence or paragraph, they

can try to understand how these small portions relate to the whole document. They

can also use this edit history to examine the mistakes they previously made and gain

a better perspective on their errors. Similarly, TechWriter can use these histories for

CHAPTER II. SYSTEM DESCRIPTION 15

automatic error correction. It can examine the way a sentence or paragraph used

to look and, assuming it has since been corrected, can model its behavior from it.

It is also possible for the student to tell TechWriter to “revert” back to a previous

iteration of a sentence or paragraph, without affecting the entire document.

Figure II.2: A screenshot of the current version of TechWriter, showing the system’s
dependency parsing (left) and error correction (bottom) dialogs. TechWriter is work-
ing with the same essay provided in appendix A, which is loaded into jEdit and visible
at the top, right-hand corner. The other two dialogs can be detached from this or
attached to any side of this main editing window.

Our versioning system, and the capabilities it can afford our system, is augmented

by many Natural Language Processing tools. The buffer from the current view in

jEdit is imported into each of these tools each as separate instances for each view.

The output is either presented as instructional material to the student—who can then

CHAPTER II. SYSTEM DESCRIPTION 16

make changes to their document in the view and update this output accordingly—or it

is used “behind the scenes” as input data to the system’s automatic error detection,

suggestion and correction technologies. All of our Natural Language Processing is

done with OpenNLP [20] with the exception of dependency parsing, which is provided

by the Stanford Parser [18]. In TechWriter, OpenNLP performs sentence detection,

POS tagging, named entity recognition, sentence chunking and Treebank parsing,

all with Maximum Entropy models built from the Wall Street Journal corpus. The

Stanford Parser relies on rules to determine dependencies (see the introduction to

chapter 2 for an example of a dependency parse), but before it does this, it uses a

very similar parser to perform the initial parsing of sentences. Spell checking is also

provided with the Jazzy spell checking API.1 Figure II.2 demonstrates TechWriter’s

dependency parsing and error detection and correction features in dialogs that are

“docked” or attached to their view.2

In the next section, we will further describe the error detection and correction

suggestion components we have previously mentioned here. Before we can do that,

however, we will discuss the data that TechWriter uses in order to provide these

services to the student. Our system draws from corpora of both published, native

American English and advanced learner English to make suggestions and detect errors.

We use portions of the “plos”, “oup” and “slate” subcorpora, containing technical

articles, non-technical journal articles, and non-fiction writing, respectively, from the

open part3 of the American National Corpus (ANC) [13]. We used 252 texts from

plos, 45 from oup (which is the entirety of these two subcorpora) and 129 from slate

(out of 4531), for a total of 413 texts, which we then tagged for parts of speech

and created bigrams, trigrams and four-grams of words and POS tags. We counted

the frequency of each n-gram in the corpus as well as the relative frequency, which

is defined as the total number of occurrences of this n-gram divided by the total

number of n-grams that begin with the first word in this n-gram. Our data typically

1http://jazzy.sourceforge.net
2jEdit allows GUI windows to be designed as “dockables”, which give them this ability to be

attached to any side of a current view. “Docking” a window is entirely optional.
3The “Open American National Corpus” contains portions of the second release of the corpus,

and is available for free from http://americannationalcorpus.org/OANC/index.html.

CHAPTER II. SYSTEM DESCRIPTION 17

ngram, raw freq, relative freq
NNP NNP NNP, 7033, 0.185
NNP NNP VBZ, 910, 0.024
NNP VBZ IN, 257, 0.0070
VBZ IN DT, 636, 0.049
IN DT NNP, 2931, 0.036

Figure II.3: The first five lines, plus heading, of oanc pos Trigram.csv.

has the format given in figure II.3. These features are compared to those generated

by TechWriter from the student’s document, as we mentioned before. We will now

elaborate on this in the following section.

II.2 Error Detection and Correction Suggestion

We will now discuss, in more detail, how the error detection and correction suggestion

features of TechWriter work; a high-level description of these can be found in the

Introduction. In order to explain how these two aspects work, we will use an essay

from the ICLE, the entirety of which can be found in appendix A. The author of this

essay was a native Swedish speaker.

Error detection currently operates at the sentence level. When a student asks to

see the errors in their document, TechWriter first finds all of the sentences in the

document, then separately tags them for parts-of-speech and stems them [22]. Then,

for each sentence, it creates bigrams and trigrams4 of both the sentence’s stemmed

words and POS tags. Each n-gram is compared against the proper data set from the

ANC (as in, either bigrams or trigrams of words or POS tags) and every n-gram that

exists in the student’s document that was not found in the ANC is returned to the

student. A list of these n-grams exists for each sentence where an error was found,

so that the student may see their errors per sentence, in isolation.

For our sample essay, TechWriter has found an error in each sentence in the essay,

and this is the list of error sentences it returns. Now, the student may select a sentence

4We will continually reference data of four-grams of stemmed words and POS tags in other
sections. We do indeed have this data, but it has not yet been incorporated into TechWriter.

CHAPTER II. SYSTEM DESCRIPTION 18

from this list and see a list of errors within it, in the form of bigrams and trigrams of

stemmed words and POS tags from that sentence. Rather than focus on the entire

essay, for the sake of brevity we will choose a small subset of sentences to demonstrate

how detection and suggestion works.

When we select the following sentence from the list of error sentences:

(9) As authors tend to be fosted in society an by society they are inevitably, to

great parts, influenced thereof.

we receive the following list of errors:

in societi an foster in thei ar inevit

JJ|NN As/IN JJ to great part JJ|VBN This/DT VBD

VBG|NN NN PRP JJ|VBN This/DT societi an

PRP . JJ|NN As/IN be foster in

inevit to great an by author tend to

author tend foster in societi be foster

great part influenc by societi thei to be foster

ar inevit to societi an by influenc thereof

an by societi part influenc as author tend

part influenc thereof

When we select one of these errors, we will be presented with a list of possible correc-

tions, pulled straight from the ANC in the same format as the error (i.e., for an error

that is a trigram of stemmed words, the list of corrections will also contain trigrams

of stemmed words). This list is generated in one of the following ways:

• If the selected error is a bigram error, with two unigrams error.a and error.b

(where error.a and error.b are the first and second unigrams of the bigram,

respectively), TechWriter will compare it to a bigram X from the ANC and add

X to a list of suggestions if either X.a equals error.a, X.a equals error.b, X.b

equals error.a or X.b equals error.b.

• If the selected error is a trigram error, TechWriter will compare it to a trigram

Y from the ANC and add Y to a list of suggestions if error and Y have any

CHAPTER II. SYSTEM DESCRIPTION 19

two unigrams in common. Trigrams that only have one unigram in common are

not considered here because, if an error exists in any pair of two words in the

trigram, that bigram itself will appear in the list of errors, and the student can

view those suggestions separately.

Now let us choose an error from the list of errors in (9) and examine the suggested

corrections. We first select a word bigram, “influenc thereof”,5 since it is an obvious

mistake. For this bigram, TechWriter provides an extensive list of suggestions, so we

have attempted to narrow down this list by setting a threshold. As we mentioned

earlier, we have calculated the raw and relative frequencies of each n-gram in the

corpus, so we can set a threshold such that no n-grams with either a raw or relative

frequency below it will appear in the list of suggestions. We have tried setting thresh-

olds on both the raw and relative frequencies, separately, to see which one gives better

results. To attempt to determine a good threshold, let us select a particular bigram

from our initial list of suggestions to use as a baseline. We would like to use “influenc

substanti” (as in, “influenced substantially”) in place of “influenc thereof”, which has

a raw frequency of 2 and a relative frequency of 0.012. Since we have decided that it

is the “ideal” correction for our error, we wish for it to always show up in the list of

suggestions for this error. We will also borrow advice from Genthial and Courtin [10]

and favor the head of the bigram; so we will add a bit of weight to bigrams whose

first unigram matches the error’s first unigram, which is “influenc” in this case.

Our first attempt is with the relative frequencies, but because relative frequencies

are floating-point values, it is difficult to use them in a boolean comparison (i.e. “Is

this relative frequency greater than the threshold?”). Also, many relative frequencies

of n-grams are the same, or almost equal to one another, while raw frequencies have

a much wider range; this makes it difficult to find a good threshold on the relative

frequencies. We then switched to a threshold on the raw frequency values, and used

the raw frequency of “influenc substanti” as a baseline. This decreased the number of

suggestions to a considerably smaller amount, but still somewhat too long; however,

we run the risk of making the list too short to be useful for other sentences. Consider

5Recall that this bigram, as well as others that we will discuss in the future, were built from
stemmed words.

CHAPTER II. SYSTEM DESCRIPTION 20

the sentence:

(10) Now, the case is not always this.

We can see that this sentence should be written as, “Now, this is not always the

case”, and the trigram “now thi is” does exist in our data, but is not returned as a

suggestion because it has a raw frequency of 1. In short, setting thresholds, as we

have done, is a good way to shorten the list of results, but sometimes the list is made

too narrow. Perhaps in the future we could move some of these additional matches to

a “More Suggestions” dialog, so as to not limit the suggestions the student receives,

but also to not overwhelm them with too many suggestions.

TechWriter is well on its way to detecting errors and providing useful suggestions

for corrections to mistakes made by students. Aside from what we have already

mentioned, we would like to provide useful feedback to the student and explain to

them the error they have made, so that perhaps they could understand why their

writing is wrong. We could certainly use POS tags for this task. We would also

like to provide suggestions in many different word forms, if they are available for

a word—we would like to show the student the different tenses, pluralization, and

other varieties of a word and try to suggest the best fit for their context. The student

should also be presented with what TechWriter perceives to be, generally, the best

fit—there is no real reason a user would pick “now this is” to fix a mistake in (10),

but, the reader will agree, it is the best choice given the context. We somehow need

to tell TechWriter to favor certain suggestions, and relay this preference back to the

student. In the next section, we will propose an idea as to how we believe TechWriter

could do this, should the mistake be one that is repeated by the student.

II.3 Future Directions

We are interested in presenting to the student the best correction to an error and also

providing some level of automatic error correction. As we mentioned in the beginning

of this section, TechWriter stores a one-level history of the student’s document, of

both sentences and paragraphs. Here, TechWriter can use this to get a broad picture

CHAPTER II. SYSTEM DESCRIPTION 21

of an error and its correction. For example, if the student often writes things similar

to (10), perhaps writing “Now, the situation is not always this” in the same or a

different document, TechWriter can look at (10) and the modifications made to it,

and apply those modifications to this new sentence. These sentences could be matched

by counting the number of words or POS tags they have in common.6 Once the errors

have been found and TechWriter has some history of those errors and the corrections

made to them, we would like TechWriter to step in, at some point, and automatically

apply these corrections.

Aside from performing this sort of rule-based pattern matching using edit histories,

we also think it would be useful to keep track of which n-grams have been used to

correct errors in n-grams, and to bias TechWriter towards offering these suggestions

more often. Say, for example, the student wrote a sentence similar to (9), only with

one error:

(11) Authors tend to be influenced thereof by the society that fosters them.

For the bigram “influenced thereof”, the student can choose to correct it with the bi-

gram “influenced substantially”, and we can add an additional weight to this bigram.

Later on, should the user make a similar mistake, say

(12) Art is often influenced moreover by technology.

TechWriter will place “influenced substantially” at the top of the list of suggestions

and encourage the student to use it. Each time the bigram is used, its weight will

increase, since this bigram represents the most common way that this student has

tried to express a similar thought, but previously could not figure out how to phrase

it correctly.

However, the student may feel that they have phrased their thought correctly, and

cannot understand why they are in error. They would probably like some explanation

as to why their writing contains an error, what the error means and why a particular

suggestion for it is correct, as opposed to what they wrote themselves. Unfortunately,

6As far as the POS tags are concerned, this is probably more interesting and useful when the
sentences have little or no words in common, but have things such as phrases of similar tenses.

CHAPTER II. SYSTEM DESCRIPTION 22

generating feedback based on a particular, unique error can be difficult if we want it

to be useful. We could simply just tell the student that they have poor style or that

the way they have written something is not the way one would write it properly in

English, as is the case with (9). Word choice is often a matter of style and a question

of what is proper as far as the overall tone of one’s writing, and TechWriter emphasizes

a more formal style appropriate for academic or professional writing. Since this is the

style the documents in our corpus employ, the student may find it beneficial to see

an example sentence which demonstrates proper usage of one or more of the words

in their error.

We can also help the student understand their error by not only presenting them

with an example sentence written by someone else, but by correctly restructuring

their sentence. Previous considerations for TechWriter included rule templates and

used transformation-based error-driven learning to make corrections to the student’s

writing, should their error match a given rule [4]. Instead of using these rule tem-

plates to correct the student’s writing, we can use these rule templates to build new

sentences out of their erroneous one. The student can have the option of using the

reconstructed sentence—or one reconstructed sentence out of several—in their writ-

ing, or they can just use the suggestion to understand how their sentence ought to

be constructed. This is similar to what we already do in TechWriter, where we allow

the student to choose a suggestion for an error n-gram and replace their error with

it in their sentence. However, what we are proposing here is a restructuring of the

entire sentence, not just a portion of it.

A technique that would aid both sentence restructuring and also our currently

implemented technology is something we are calling “reverse stemming”, which is

simply building every possible word form out of a stemmed word. Recalling our

example from section 3.1, the bigram “influenc substanti” in its stemmed form may

not provide much assistance to the student; they may not know whether “influenced

substantial”, “influence substantially” or “influenced substantially” is the best fit for

their sentence. It would be beneficial to the student to see all of these forms and to

either pick the optimal one or have TechWriter do so for them, as part of TechWriter’s

automatic error correction.

CHAPTER II. SYSTEM DESCRIPTION 23

Certain suggestions can be further biased, and errors can be explained by sup-

plying the student with some information on writers of their same background. As

we will describe in the next chapter, we have discovered that students of particular

native languages make mistakes in the L2 that students of other native languages do

not make, and there are some mistakes that are made quite frequently, which indicate

some common problems among these students. This leads us to believe that there are

many errors which are particular to students of a particular background and we can

offer customized assistance to them based on this information. We can bias certain

suggestions based not so much on the frequency of a related error made by the stu-

dent, but also based on the frequency of these errors made by others with the same

native language, with the rationale that, when students of a certain native language

write a particular error-prone phrase, they most often mean to write a particular

error-free one. We can demonstrate this to the student, and perhaps this will help

them to understand their mistakes.

Chapter III

Errors: Unique to the User or

Their Background?

Statistics show that Chinese L2 students have enough knowledge of the English lan-

guage to be able to differentiate between English written by a native speaker and

that written by another native speaker of Chinese [16]. This implies that there are

some subtle differences in the way native Chinese speakers write, as opposed to native

speakers of English, that are remarkably common among these L2 writers. We hy-

pothesize that this is true for learners from any background; a native German speaker

can probably determine when the author of an English text is German, and similarly

for a Russian native speaker, a Japanese native speaker, and so on. We would like

to both determine whether or not this is universally true, and why this is so: what

mistakes does a non-native English student make that perhaps reveals their native

language?

Chorodow et al. has found that, in the writing of 53 intermediate to advanced

L2 students, about 29% of their grammar errors were with prepositions [7]. However,

learners in the L1—that is, students who are native speakers of English—tend to

not have any problem with prepositions, and instead, we imagine their errors will be

more stylistic [9]. We can use this information to our benefit: if a student’s writing

contains numerous preposition errors, we can safely say that their native language is

not English. We are then presented with the task of precisely determining what their

24

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?25

native language is.

From the ICLE, we took the Spanish (260 essays), Russian (279 essays) and Ger-

man (450 essays) subcorpora and divided them each into training and testing sets of

90% for training, 10% for testing. We combined all of the testing essays into one file

for each subcorpus and ran that file through OpenNLP’s POS tagger. This gave us

two files for each subcorpus, one with just the essays, and one with the essays after

they were tagged for POS. We then created unigrams, bigrams, trigrams, four- and

five-grams for each of these files, counting the raw and relative frequencies and stor-

ing them in the same format discussed in chapter 3. With this data, we ultimately

performed two tasks: we attempted to determine the native language of the author of

each of the testing examples with the given training data, and we also attempted to

see which errors were common and unique to writers of a particular native language.

Our work in this chapter falls under the larger heading of “corpus similarity”,

which is the task of determining how similar two corpora are to one another, and

why. Much work in this regard has been done by Kilgarriff, who, together with Rose

has cited the use of statistical measures as a method of determining how similar two

corpora, or even two individual documents, are to one another [15]. The best measure

they found is the chi-squared test, in which they take the n most common words

between the two corpora being compared, calculate the number of occurrences of each

word in both corpora under the assumption that both corpora are random samples

from the same population, and apply the chi-squared measure to this data.1 This

provides a metric of how similar two corpora are to one another, but one may ask what

it is that makes these two corpora so similar. Kilgarriff and Rose point out that the

answer to this question is complex and “multi-dimensional”, since corpora themselves

are multi-dimensional, and on some levels, will be both similar and dissimilar to one

another [15]. We can thus look towards the work of Kenneth Church, who has found

that within a document, certain uncommon words such as proper nouns are unlike

lightening, which will never strike the same place twice. These words will, in fact,

appear in the document at least once more, with a higher probability than a word

that is generally used more often in English [8]. For our work, we rely on both proper

1We will do something very similar using Pearson’s r coefficient in section 4.1.

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?26

nouns and phrases which contain nouns and express an idea; as we shall see, we

have found that certain phrases, which are obviously linked to ideas, appear quite

frequently in the writing of certain groups of non-native speakers. It can be said,

therefore, that the way in which these ideas are expressed are not like lightening and

are linked to the writing style of the author’s native language. We have found that

these words and phrases are the best criteria for determining the native language of

a writer.

III.1 Determining the Native Language of a Writer

We combined all the training essays in a given subcorpus into one file and generated

five files for each of these, separately containing unigrams, bigrams, trigrams, four-

and five-grams, and their raw and relative frequencies. Then, for each testing essay,

we generated the same n-grams, along with the frequencies, and compared this data to

the training data for each native language and, for each testing essay–n-gram–native

language pair, we created files with data along the lines of the following:

ngram, raw freq exp, relative freq exp, raw freq obs, relative freq obs
of the, 1739, 0.252, 1, 0.1
is not, 323, 0.072, 1, 0.2
base on, 54, 0.519, 1, 1.0
to the, 602, 0.106, 1, 0.1
of time, 48, 0.0070, 1, 0.1
it is, 638, 0.269, 1, 1.0

Figure III.1: A portion of RUMO1019 spanish Bigram.csv, which contains bigrams
that appear both in the essay in the file RUMO1019.txt and in the writing of someone
whose native language is Spanish. The native language of the author of the essay is
Russian.

The first line of the file, the header, indicates that each of the comma-separated

values on every line are actually columns (which makes each line a row). In the

header, the suffix exp indicates that this is the value of the raw or relative frequency

that we expect to see, or rather, the frequency of the n-gram in the training data (in

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?27

this case the file containing bigrams from the Spanish training data). The suffix obs

is what we observe, or specifically, the raw or relative frequency of the n-gram in the

testing data (here, the essay in the file RUMO1019.txt).

All of the n-grams for one testing essay/training data pair were combined into

one file, which gives the testing essay RUMO1019.txt four files: RUMO1019 english,

RUMO1019 german, RUMO1019 russian and RUMO1019 spanish, all in the same

format described above. The English training data comes from a portion of the Wall

Street Journal corpus which contained 11,676 words. As we briefly mentioned above,

each of these files contain n-grams that appear both in the testing essay and in the

respective training data.

Then, for each of these four files that we had for each testing essay, we used their

expected and observed relative frequency data and calculated Pearson’s r coefficient.

This data was stored in a spreadsheet in the following format:

File Name Native Language English (WSJ) German Russian Spanish
GEAU1001 German 0.802915 0.7196509 0.7642184 0.743472
GEAU1002 German 0.8185328 0.6904784 0.6934538 0.7553417
GEAU1003 German 0.747711 0.6528048 0.6883687 0.6524887
GEAU1004 German 0.9312493 0.7083856 0.7469997 0.755657
GEAU1005 German 0.7688159 0.6900201 0.6867212 0.7299155
GEAU1006 German 0.8516055 0.6663766 0.6459643 0.6751704

Figure III.2: Our data for the first six testing essays whose author’s native language
is German. Here, the data used is n-grams of words, and the last four columns hold
the values of the Pearson’s r coefficient that we calculated with the four different sets
of training data. The second column represents our prior knowledge; i.e., that the
native language of the writer of the corresponding essay is German (which we know
from the ICLE).

Now, to recap, we are trying to determine which of these native languages is that

of the author of a given test essay, based solely on either the words or the POS tags

used within that essay. We are using Pearson’s r coefficient as a measurement of this,

and our insight is that the larger the value of this coefficient, the larger the difference

between that essay and essays written by speakers of that native language; in other

words, if an essay x of native language X has a high r coefficient when compared

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?28

against training data of native language Y , the native language of the author of x is

not Y . Thus, we took the minimum of the four values for each row in the spreadsheet

(in the columns labeled “English (WSJ)”, “German”, “Russian” and “Spanish”) and

said that the predicted native language of the author was whichever r coefficient

corresponded to that minimum. Below is the predicted native language for the six

test essays given in the table in III.2, omitting the calculated r coefficients.

File Name Native Language Most Similar To
GEAU1001 German German
GEAU1002 German German
GEAU1003 German Spanish
GEAU1004 German German
GEAU1005 German Russian
GEAU1006 German Russian

Figure III.3: The predicted native language of six essays whose author’s native lan-
guage is German, based on n-grams of words.

We completed this test for all 99 test essays (45 from the ICLE native German

subcorpus, 28 from the Russian subcorpus, and 26 from Spanish), for both n-grams of

words and POS tags, separately. Since English was never predicted to be the native

language, we decided to omit English from the tests with n-grams of POS tags;

considering this, along with our results (presented in figure III.4), we have concluded

that these tests would be better served with more training data for each language,

including English. We were best able to predict German as a native language, and

our worst predictions were with Spanish, between which there is a difference of 171

training essays. Also, German was the most frequently predicted native language

across all of the predictions, accounting for 48.5% of them in the tests with word

n-grams, and 39.4% of the predictions in the tests with n-grams of POS tags.2

2This result isn’t as dramatic as the former one, however; the percentages of how many essays
were predicted to come from an author of each native language is as follows: German with word
n-grams, 48.5%, German with POS n-grams, 39.4%; Russian with word n-grams, 33.3%, Russian
with POS n-grams, 34.3%; Spanish with word n-grams, 18.2%, Spanish with POS n-grams, 26.3%.

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?29

Native Language N-Grams Used Predicted Correctly Number of Training Essays

German Words 35/45 (77.8%) 405
POS tags 17/45 (37.8%)

Russian Words 19/28 (67.9%) 251
POS tags 9/28 (32.1%)

Spanish Words 14/26 (53.9%) 234
POS tags 8/26 (30.8%)

Overall Accuracy for Word N-Grams: 68/99 (69.9%)
Overall Accuracy for N-Grams of POS tags: 34/99 (34.3%)

Figure III.4: Results from our native language prediction tests using Pearson’s r
coefficient.

After looking at these results, we wondered if the amount of native German data

we had was overshadowing the rest of the data, so we removed random essays from

that training set so that we had the same number of essays as the training set with

the smallest number of essays—in this case 234—and equivalently, we tested this

with the smallest number of test essays, which was 26. We discovered that while

our hypothesis was somewhat true, our overall accuracy and our ability to predict

German as a native language suffered dramatically. In this test, German was no longer

the most frequently predicted language, but was now Russian, which was predicted

(either correctly or incorrectly) 50% of the time (40/80 essays); we imagine this is

because of the 17 additional training essays in the Russian data set.

Native Language Predicted Correctly Number of Training Essays
German 12/26 (26.7%) 234
Russian 20/28 (71.4%) 251
Spanish 16/26 (61.5%) 234

Overall Accuracy: 48/80 (48.5%)

Figure III.5: Results from our native language prediction tests using Pearson’s r
coefficient and a smaller training set of essays whose author’s native language was
German. We only performed these tests with n-grams of words.

From the results of these tests we arrive at two conclusions: more training data

improves accuracy, and it is the words of the essay that serve to distinguish its author’s

native language from that of another author’s—the combinations of parts-of-speech

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?30

used do little to support this. All words in English have a part-of-speech associated

with them, which means that there is a small number of categories into which an

almost infinite number of words are placed; thus there are fewer unique combinations

of POS tags than there are of words. One may now wonder exactly what words, or

combinations of words, are particular to a non-native speaker of a certain language

that helps to categorize it as coming from a native speaker of that language; this will

be the focus of the next section.

III.2 What is Characteristic of Non-Native En-

glish?

Knowing which words and combinations of words are unique to writers of a particu-

lar background can help us improve our accuracy at predicting the student’s native

language, and also in pointing out their errors. For example, if writers from one lan-

guage often write the same phrase incorrectly, we can show this to the student and

also show them how these writers ought to be phrasing it.

For these tests, we used the exact same training and testing sets that we used in

the experiments mentioned in section 4.1, with the addition of the entire portion of

the ANC that we used in TechWriter. This gives us four datasets to test against:

American English writing and German, Russian and Spanish L2 writing. We used

the same n-gram data we generated earlier, of bigrams, trigrams and four-grams of

both words and POS tags, separately. With this data, we wanted to determine two

things:

1. What are the most frequently used word and part-of-speech combinations in

the L2 writing of native German, Russian and Spanish students?

2. What errors are made by these students that do not appear in the writing of L2

students of any of the other backgrounds; i.e., what errors would a native Ger-

man speaker make that a native Russian speaker would not? Also, what errors

are made by writers in the L2 that are particular to their native background?

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?31

Before we can answer these questions, we should briefly return to our discussion

discussion about the problems with POS taggers. Most POS tagging software tends

to rely on a window of context on either side of the word it is currently trying to

tag, and we have reason to believe our tagger also works in this way. As a result, our

tagger will often wrongly tag the current word if it cannot determine what the word’s

tag should be based on its model or based on the tags surrounding it, especially if

those tags themselves are wrong.3 This results in curious tag combinations such as

the four-gram : 88 DT JJ found in Spanish L2 data as part of the following fragment:

(13) At/IN the/DT end/NN we/PRP can/MD see/VB how/WRB Mosca/NNP

cheats/: Volpone./88 The/DT characters/JJ play/NN with/IN double/JJ

faces./JJ|NN

When isolated away from the rest of the essay and put into TechWriter, the first

sentence in (13) is tagged slightly differently, yet still wrong; “cheats” is tagged as

a plural noun (NNS) when it should be a third-person singular verb (VBZ). The

most likely cause of this it that the tagger cannot determine what “Mosca” is; it can

see that it is a noun, but it cannot tell that it is a noun that represents something

capable of performing an action, as we can infer from the context. The unfortunate

effect of this is that the results of our tests with POS tags are somewhat skewed.

Many incorrectly-tagged sentences or phrases do contain an error, and an error in

their POS tags would properly indicate this; however, this is not automatically true

for all sentences.

Keeping that in mind, we will now present the most frequent n-grams in our

training data from each of the three subcorpora we used in figures III.6 and III.7. One

will notice that, for POS tags, the results are almost identical. We thought perhaps

that the frequency of how often these n-grams appeared would help to differentiate

the writing of speakers of one native language from another, but the raw frequencies

and the combinations of tags are so similar to one another that the impact of these

n-grams cannot be too significant. Thus we have highlighted results that we feel may

help to identify an author’s native language. While these results are almost identical,

3Recall our discussion of this and related problems in chapter 2, as presented by Thurmair [24].

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?32

the order in which the n-grams appear in each list (for the most common bigrams,

trigrams and four-grams) differs slightly for each language. There is also a large

gap between the third and the fourth most frequently found bigram in the Spanish

data, and the bigram TO VB shows up far less in Spanish than in the other two

languages. Despite the similarities in the results, we feel that this data, along with

the unique n-grams in each training set may have influenced the results we got in the

tests performed in section 4.1.

Bigrams
German Russian Spanish

NN IN 11725 NN IN 12895 NN IN 11724
DT NN 11433 DT NN 12227 DT NN 11646
IN DT 9844 IN DT 9917 IN DT 10160
JJ NN 8307 JJ NN 9160 JJ NN 7270
DT JJ 5729 DT JJ 5686 DT JJ 5456

Trigrams
German Russian Spanish

IN DT NN 5112 DT NN IN 5496 DT NN IN 5445
DT NN IN 4730 IN DT NN 5172 IN DT NN 5394
NN IN DT 4131 NN IN DT 4412 NN IN DT 4690
DT JJ NN 3632 DT JJ NN 3687 DT JJ NN 3555
JJ NN IN 3091 JJ NN IN 3315 JJ NN IN 2919

Four-Grams
German Russian Spanish

NN IN DT NN 2092 IN DT NN IN 2263 NN IN DT NN 2489
IN DT NN IN 1982 NN IN DT NN 2197 IN DT NN IN 2399
DT NN IN DT 1576 DT NN IN DT 1766 DT NN IN DT 2086
DT JJ NN IN 1493 DT JJ NN IN 1566 IN DT JJ NN 1552
IN DT JJ NN 1441 IN DT JJ NN 1517 DT JJ NN IN 1552

Figure III.6: The most frequently occurring combinations (n-grams) of POS tags in
our testing data.

However, as we also discussed in section 4.1, we believe that the words used in a

student’s writing will be a better indicator of their native language than POS tags.

Regardless of how many unique n-grams of POS tags our data may have, the n-grams

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?33

still consist of the same POS tags, and there will be considerable overlap; with n-

grams of words, this is significantly less likely to occur. We can see this from figure

III.7, which lists the most frequent word n-grams from our training data, regardless

of whether or not they contain an error.

Bigrams
German Russian Spanish

of the 1204 of the 1432 of the 1739
in the 1000 in the 1020 in the 1057
it is 720 it is 991 it is 638
to be 615 to the 589 to the 602
to the 509 to be 562 is the 509
on the 475 on the 438 to be 424

Trigrams
German Russian Spanish

in order to 122 a lot of 206 in order to 216
seem to be 104 on of the 120 a lot of 142
a lot of 102 dream and imagin 111 on of the 124
the fact that 99 there is no 101 of the plai 105
it is a 81 i think that 97 on the other 99
on of the 80 point of view 95 the other hand 99

Four-Grams
German Russian Spanish

on the other hand 56 i would like to 71 on the other hand 90
at the same time 40 at the same time 62 the end of the 49
in front of the 31 the root of all 50 at the same time 48
all over the world 26 root of all evil 48 on of the most 48
i would like to 25 on the other hand 43 at the end of 45
on the on hand 21 ar a lot of 42 the import of be 39

Figure III.7: The most frequently occurring combinations (n-grams) of stemmed
words in our testing data.

As we can see, there is almost no variation in the bigrams across these three

datasets aside from frequency counts, and we also see some of the same trigrams and

four-grams in each set. Even from this small subset of data we can see distinctions

in the writing of students from these three backgrounds; despite the fact that all

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?34

the students were given similar essay topics,4 there is considerable difference in word

choice and ideas among them, which seem to be common to these writers as a whole.

For example, Russian students seem to be quite interested in abstract, philosophical

concepts such as dreams and “the root of all evil”.

One thing we cannot tell from this list, however, is whether or not Russian students

are the only group writing about “the root of all evil”. Therefore, our next test was to

determine what word n-grams appear in the writing of each of these groups, but not

in any of the others; i.e., what phrases appear in the writing of Russian L2 students

but not in that of German or Spanish L2 students. We feel that these differences are

key in identifying the background of a student, given a sample of their writing.

Our method for determining this was quite simple: we loaded the n-grams for a

set of training data for language X and the n-grams for a test essay y from language

Y into memory and for each n-gram that existed in both X and y, we removed it

from X, and if it appeared only in y, we added it to X; this gave us a list of n-grams

that were uncommon among X and y (or, to follow the wording used in figure III.8,

a list of n-grams found in L2 writing from students of the language corresponding to

y that were not found in L2 writing by students from the language corresponding to

y). The lists we generated for each y were then combined into a list for Y , with their

relative and raw frequencies updated across the entire set.

Notice there is a clear difference in both the ideas that are expressed within the

writing from students from these backgrounds and also in the way they are expressed.

It is more likely that a Spanish writer in the L2 will say “because it” than “because

of”, a phrase which is highly probable for a German writer. This is valuable data

which can assist us in determining the native language of a student.

Now that we can identify the native language of the student, it would be extremely

helpful to go one step farther and identify the errors that are particular to the native

language of the student. Similar to our work in chapter 3, we operate under the

assumption that any n-gram that does not appear in the ANC must be an error. We

also used an identical method to the one we used to find the uncommon n-grams

4Typically, ICLE data is compiled by teachers who assign essays on one or several topics specified
by the Centre for English Corpus Linguistics at the Université catholique de Louvain, which compiles
the corpus [12].

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?35

Bigram Found in L2 from.but not Raw Frequency
prison system Russian German 22
becaus it Spanish German 15
becaus of German Russian 12
becaus it Spanish Russian 15
becaus of German Spanish 12
profession soldier Russian Spanish 10

Trigram Found in L2 from.but not Raw Frequency
the prison system Russian German 11
to the caus Spanish German 6
a speed limit German Russian 9
to the caus Spanish Russian 6
a speed limit German Spanish 9
of profession soldier Russian Spanish 5

Four-Gram Found in L2 from.but not Raw Frequency
entir of profession soldier Russian German 4
to the caus of Spanish German 6
car ought to be German Russian 8
to the caus of Spanish Russian 6
car ought to be German Spanish 8
entir of profession soldier Russian Spanish 4

Figure III.8: The most common bigrams, trigrams and four-grams found in the writing
of German, Russian and Spanish students that are exclusive to students from those
native languages.

among the training sets, except rather than use training data for every language, we

only used data from our subset of the ANC in each comparison. In figure III.9, we

present n-grams that do not appear in the ANC but appear in our training data with

the highest raw frequency for each set.

The most interesting observation about these results is that none of the n-grams

seem to contain an error. We imagine that this will be the most common situation

since our software is geared towards, and the ICLE contains samples from, advanced

learners of English. However, while they may appear correct when isolated, these

n-grams may represent poor phrases within their entire sentence, particularly from a

stylistic perspective. A search through our German L2 training data with the German

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?36

Bigram Language Raw Frequency
by car German 15
prison system Russian 22
becaus it Spanish 15

Trigram Language Raw Frequency
to be ban German 9
the prison system Russian 11
to the caus Spanish 6

Four-Gram Language Raw Frequency
car ought to be German 8
serv in the armi Russian 4
to the caus of Spanish 6

Figure III.9: The bigrams, trigrams and four-grams that appear most often in our L2
test data that do not appear in our English data (ANC).

bigram “by car” finds the following sentence where the phrase is used in an awkward

way:

(14) Another cousin of mine was innocently killed in a car accident, just because two

young fellows had played cats and dogs by car.

At least in American English, the correct way to phrase that last portion of the

sentence would be “two young fellows were playing Cats and Dogs with their cars.”

Knowing about errors that are common across students from the same native

language helps us to correct their errors. In a future experiment, we would like to

determine what these students are most often trying to express when they make these

errors so that we can offer this to students as a heavily-weighted correction to the

particular error. However, our data shows n-grams that are not found in our English

corpus and are common mistakes among students from a specific background; we

cannot guarantee that all errors made by a student will fall under this category. We

now wonder how many errors are idiosyncratic, or particular to the student, rather

than to their background. Across bigrams, trigrams and four-grams, the average

number of times each unique n-gram appears in any of our training sets is 2; thus the

chance that a phrase is simply particular to the student who wrote it is extremely

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?37

high.

When we ran our tests earlier, comparing n-grams in training set X to test essays

from language Y , we also compared test essays x from language X against the training

data for X and similarly combined the results. This gave us a list of all n-grams from

these essays that do not appear in the L2 training data for the essay’s respective

native language. We then wondered which of these n-grams were errors or were not

found in the ANC. We went through this list of idiosyncratic n-grams and kept the

ones that did not appear in the ANC; the numerical results of this are presented in

figure III.10.

Bigrams
Language Total Total Errors Percent of Total
German 4435 4293 96.8%
Russian 1657 1551 93.6%
Spanish 2794 2602 93.1%

Trigrams
Language Total Total Errors Percent of Total
German 11470 11404 99.4%
Russian 5110 5081 99.4%
Spanish 7943 7852 98.9%

Four-Grams
Language Total Total Errors Percent of Total
German 14672 14660 99.9%
Russian 7027 7022 99.9%
Spanish 10777 10758 99.8%

Figure III.10: The number of unique n-grams that were found in the testing essays
for their respective training data, along with the number of unique n-grams from this
set that were not found in the ANC.

It is interesting to note that almost all of these so-called idiosyncratic phrases do

not appear within the ANC, and would be considered errors by TechWriter, which

may or may not be accurate.

While error detection and correction will work exactly the same way for these

idiosyncratic errors as it will for errors that are common among students from the

same background, knowing the student’s background can help to put their errors in

CHAPTER III. ERRORS: UNIQUE TO THE USER OR THEIR BACKGROUND?38

perspective, making them feel more comfortable about their mistakes and helping

them to understand why they have made them. Similarly, this information can help

improve our software if we are able to determine a common, most probable correction

to these common mistakes; we can then automatically apply these corrections or push

them to the top of the list of suggestions for the student.

Chapter IV

Results and Conclusions

The English language happens to be quite complex, and the ability to effectively

communicate with it is becoming increasingly important, from a global standpoint.

Writing in English can be a serious problem, even for an advanced student of the

language, regardless of how long they have been working with the language. With

TechWriter, we have attempted to address this with a personalized approach that

both assists the student with their writing and improves on their skills at the same

time. The system aims to be personalized by tailoring itself to the student, tailoring

its interactions with the student as it determines more information about them, such

as their native language. TechWriter assists the student by removing some of the

more redundant work from essay writing, such as correcting the same type of error

repeatedly; however, the system will only automatically correct these errors after the

student has made an initial correction themselves, demonstrating to TechWriter how

to fix these mistakes. In this way, the system improves the student’s writing skills by

forcing them to think about their mistakes; the student must choose the best way to

fix an error, using the tools provided by TechWriter.

To help the student learn, TechWriter provides a wide range of data on their writ-

ing provided by various NLP tools, as well as a large list of suggestions for ways they

can correct their errors—which TechWriter points out to them—straight from actual

English writing. In the future, the system will be able to reconstruct the student’s

error-laiden sentence and offer suggestions for corrections based on corrections they

39

CHAPTER IV. RESULTS AND CONCLUSIONS 40

themselves have made in the past and also based on data from other writers of their

background.

In chapter 4, we have adequately demonstrated that it is entirely possible to

determine the native language of an L2 writer, based almost entirely on the words

within their writing. As we have shown from our experiments, more data would be

helpful to improve our accuracy, but we are limited here by what is provided in the

ICLE. Even in TechWriter, many phrases are marked as errors when perhaps they

should not be, based on the fact that the phrase does not appear in our English

corpus. While more data would also help in this case, it is important to recall that

TechWriter is geared towards improving formal, academic, professional writing, and

much of the writing samples we have looked at here (from the ICLE) are primarily

casual, and should not be.

A system such as ours is capable of incorporating many diverse technologies to

accomplish its goals, and as a result, can be pulled in many different directions.

We have discussed many of these tools and systems in chapter 2, most of which

have similar goals to TechWriter; we have also mentioned some of the issues one can

encounter when developing such tools, primarily in regards to parsing and tagging

L2 writing. We believe that we have demonstrated possible solutions to this problem

and how we can avoid them in TechWriter, when necessary.

There is plenty of room for TechWriter to grow and perhaps, in the future, the

software can be incorporated into a curriculum at the high school or college level,

particularly for students in disciplines which are math- or science-intensive.

Bibliography

[1] Allen, C. “Class of 2008 Steps into Good Job Market”. National Asso-

ciation of Colleges and Employers, 2008. Retrieved May 10, 2008, from

http://www.jobweb.com/Jobs/market.aspx?id=1219.

[2] Aspray W., F. Mayadas, and M. Vardi, editors. “Globalization and Off-

shoring of Software: A Report of the ACM Job Migration Task Force”.

Association for Computing Machinery, 2006. Retrieved May 6, 2008, from

http://www.acm.org/globalizationreport.

[3] Atwell, E. S. “How to Detect Grammatical Errors in a Text Without Parsing

It”. Proceedings of EACL 87, Copenhagen, 1987.

[4] Brill, E. “Transformation-Based Error-Driven Learning and Natural Language

Processing: A Case Study in Part-of-Speech Tagging”. Computational Linguis-

tics, 1995.

[5] Burnstein, J., M. Chodorow and C. Leacock. “Automated Essay Evaluation: The

Criterion Online Writing Service”. AI Magazine, 2004.

[6] Chodorow, M. and C. Leacock. “An Unsupervised Method for Detecting Gram-

matical Errors”. Proceedings of NAACL 00, Seattle, 2000.

[7] Chodorow, M., J. R. Tetreault and N. Han. “Detection of Grammatical Er-

rors Involving Prepositions”. Proceedings of the 4th ACL-SIGSEM Workshop on

Prepositions, Prague, 2007.

[8] Church, K. W. “Empirical Estimates of Adaptation: The Chance of Two Norie-

gas is Closer to p/2 than p2”. Proceedings of the 18th Conference on Computa-

tional Linguistics, Saarbrücken, 2000.

[9] Gamon, M., J. Gao, C. Brockett, A. Klementiev, W. B. Dolan, D. Belenko and

L. Vanderwende. “Using Contextual Speller Techniques and Language Modeling

for ESL Error Correction”. Proceedings of IJCNLP, Hyderabad, 2008.

41

BIBLIOGRAPHY 42

[10] Genthial, D. and J. Courtin. “From Detection/Correction to Computer Aided

Writing”. Proceedings of COLING-92, Nantes, 1992.

[11] Gilmore, M. and M. Hall. “Intl. Grad Student Rates Climb Back Up [Electronic

version]”. The Cavalier Daily, 2007. Retrieved April 15, 2008, from

http://www.cavalierdaily.com/CVArticle.asp?ID=29242&pid=1544

[12] Granger, S. “The International Corpus of Learner English: A New Resource

for Foreign Language Learning and Teaching and Second Language Acquisition

Research”. TESOL Quarterly, 2003.1

[13] Ide, N. and C. Macleod. “The American National Corpus: A Standardized Re-

source of American English”. Proceedings of Corpus Linguistics, Lancaster UK,

2001.

[14] “jEdit - Programmer’s Text Editor - Overview”. jEdit, 2008. Retrieved May 12,

2008 from http://www.jedit.org/.

[15] Kilgarriff, A. and T. Rose. “Measures for Corpus Similarity and Homogeneity”.

Proceedings of the 3rd Conference on Empirical Methods in Natural Language

Processing, Granada, 1998.

[16] Liu, T., M. Zhao, J. Gao, E. Xun and C. Huang. “PENS: A Machine-aided En-

glish Writing System for Chinese Users”. Proceedings of the 38th Annual Meeting

on Association For Computational Linguistics, Hong Kong, 2000.

[17] Macdonald, N. H., L. T. Frase, P. S. Gingrich and S. A. Keenan. “The Writer’s

Workbench: Computer Aids for Text Analysis”. IEEE Transactions on Commu-

nications, 1982.

[18] de Marneffe, MC., B. MacCartney and C. D. Manning. “Generating Typed De-

pendency Parses from Phrase Structure Parses”. Proceedings of the 5th Interna-

tional Conference on Language Resources and Evaluation (LREC), Genoa, 2006.

1For further, up-to-date information on the ICLE, one can consult the website at
http://cecl.fltr.ucl.ac.be/Cecl-Projects/Icle/icle.htm.

BIBLIOGRAPHY 43

[19] Moré, J., S. Climent and A. Oliver. “A Grammar and Style Checker Based on

Internet Searches”. Proceedings of the LREC2004, Lisbon, 2004.

[20] Morton, T. S. “The OpenNLP Homepage”. OpenNLP, 2006. Retrieved May 12,

2008 from http://opennlp.sourceforge.net/.

[21] Nagata, R., A. Kawai, K. Morihiro and N. Isu. “A Feedback-Augmented Method

for Detecting Errors in the Writing of Learners of English”. Proceedings of the

21st International Conference on Computational Linguistics and 44th Annual

Meeting of the Association for Computational Linguistics, Sydney, 2006.

[22] Porter, M. F. “An Algorithm for Suffix Stripping”. Program: Electronic Library

and Information Systems, 1980.

[23] Schneider, D. and K. F. McCoy. “Recognizing Syntactic Errors in the Writing of

Second Language Learners”. Proceedings of ACL 1998, Montreal, 1998.

[24] Thurmair, G. “Parsing for Grammar and Style Checking”. Proceedings of

COLING-90, Helsinki, 1990.

[25] Zweben, S. “2003-2004 Taulbee Survey: Record Ph.D. Production

on the Horizon; Undergraduate Enrollments Continue in Decline”.

Computing Research Association, 2005. Retrieved May 6, 2008, from

http://www.cra.org/CRN/articles/may05/taulbee.html.

Appendix A

Sample Essay from the ICLE:
SWUL8050.txt

<ICLE-SW-LND-0050.8>
The relationship between a society and its authors is in many cases the one between

the cause and its effect. As authors tend to be fostered in society an by society they
are inevitably, to great parts, influenced thereof. The childhood years are of great
importance and have at many instances, if not inspired them, prompted authors to
create some magnificent works of art. But the case may also be that in their younger
years they did not have anything to write about, and if they had, they did not know
how. This was the case with Wilfred Owen. As many of his colleagues he was a
former private school student. The first poem he wrote reflected the infantile dreams
that were nurtured in these schools. There were bid words but no essence Dulce
et decorum est pro partia mori! But as that great teutonic migration (as Scott F.
Fitzgerald said) went on, Owen saw and expirienced the evils of our society. He was
impelled to write about what he saw, to express the great horror experienced in the
battlefield: “gas, gas quick boy, an extasy of fumbling.... as under a green sea I saw
them drowning”. But his greatest poems were not written on the theme of horror
but on the theme of pity. he himself said “My subject is the pity of war, the pity
that war distilled”. Among thes poems were Futility, Insensibility, Mental Cases and
Dulce et decorum est. These poems did more to influence society on the issue of war
than all the newspapers did during the First World War. In this way we see how
society influenced (if not killed him in the case of Owen) the poet and how he in his
turn influenced society by his ideas, expressed in the form of poetry.

Now, the case is not always this. In what way can we say that Oscar Wilde was
influenced by society when he wrote the Happy Prince for his two sons? This sad
fairy-tale cannot be but an offspring of his mind, a creation by his fantasy, a tale told
to amuse children with no social implications. One may of course argue that since he
wrote this tale for his both sons, and since he incorporated a theme concerned with
moral issues he might have intended this tale as mean to educate his sons in Christian

44

APPENDIX A. SAMPLE ESSAY FROM THE ICLE: SWUL8050.TXT 45

values. However the case is, we can conclude that society more often than not, the
authors, by their works, influence society, albeit unitentionally.

